S

N

S

/SQL Injection is one of the top ten web application \
vulnerabilities according to OWASP. The prime objective of an
attacker using this exploit is to steal data from an organization.
Once an attacker becomes aware that your system is vulnerable
to SQL Injection, he has the ability to alter or delete the
database. The impact of this vulnerability is critical to an
organization and it must be dealt with the highest priority.
he aim of this project is to demonstrate how simple this
attack can be executed. We use RandomStorm’s Damn
Vulnerable Web Application to setup a vulnerable web application
on the localhost. We also use sglmap to automate detecting and
exploiting SQL Injection. After exploitation, the audience will be

\Tented with ways to defend and prevent the vulnerability. J

Materials
4 « Laptop (MacBook Air OS X Mavericks) A
« Damn Vulnerable Web Application (DVWA) V1.0.8
« Kali Linux (1.0.9)
 VMware Fusion
\ * sqglmap Y.

Discussion

SQL Injection is one of the most common vulnerabilities to
date. The flaw comes from web application development and is
not a problem from the database or web server. SQL injection
errors occur when data enters a program from an untrusted
source or the data is used to dynamically construct a SQL
query. Here is sample of vulnerable source code:

1| query = "select * from users where user = +

2 Request.form("user”) + "' and passwonrd =
3 getSaltedHash(Request.form("“password”)) + "'";
4
5

i

queryResult = Database.executeQuery(query);

14 7

Using an input of “administrator’ —”, the attacker can login
as admin without having to provide a password. The query
string will look like this:

1| select * from users where user = 'administrator <i>--' and password = ' '</1»

According to OWASP SQL Injection Prevention Cheatsheet,
there are a couple ways to prevent this vulnerability:
« Use of prepared statements (parameterized queries)
« Use of stored procedures
« Escaping all user supplied input

« Enforce using least privelage accounts
« White list input validation

C SQL Injection Attack (SQLIA) Ol11JASP

@ Nolan Hu & Professor Fangyang Shen |

O~ New York City College of Technology, Computer Systems Technology ggggrﬁgjgf&?ggga“m)
Abstract Method Conclusion

1. Setup a virtual pentesting lab for the demonstration. The
only hardware equipment being used is a MacBook Air
(2014) with OS X Mavericks. We used Vmware Fusion to
setup the virtual lab environment.

2. Download and install the Kali Linux 1.0.9 ISO on a virtual
machine. We move over to work on the new operating
system.

3. Download and extract the Damn Vulnerable Web
Application (DVWA) V1.0.8 into the root directory. Start
apache2 and MySQL and create a dvwa database. On the

browser navigate to “http://locahost/dvwa” and login.

Cookies

Search:

Vulnerability: SQL Injection

User ID: ‘localhost ~ JSESSIONID

i Host: localhost
File Inclusion ‘ More info -

UUUUUU
Remove Cookie Remove All Cookies, | Close

oooooo

ecl evel:
PHPIDS: disahled

4. Obtain the cookie from the browser. Launch the sglmap
script with the syntax “sqglmap -u "http://localhost/dvwa/
vulnerabilities/sqli/?id=2&Submit=Submit#" --
cookie="PHPSESSID=qgrgtdh9ct4nhe9apasuml15ec5;
security=low;" --current-user --current-db —dump”. Follow
through the prompts and the end result will be all the
database contents including the cracked password hashes.

ith other tools [y/N] y

ased attack? [Y/n/q] vy

st/dvwa/hackable/users/admin.jpg | 5f4dcc3b5aa765d61d8327deb882c 99 (passw
st/dvwa/hackable/users/gordonb.jpg | €99al8c428cb38d5f260853678922e03 (abcl23)
st/dvwa/hackable/users/1337.jpg | 8d3533d75ae2c3966d7e0d4fcc69216b (charley) | Me
ost/dvwa/hackable/users/pablo.jpg | 0d107d09f5bbedfcade3deSc71e9e9b7 (letmein i
st/dvwa/hackable/users/smithy.jpg | 5f4dcc3b5aa/765d61d8327deb882c 99 (p]

The demonstration shows just how easy a SQL Injection
attack can be. There is even software that will help automate
the exploit and allow anyone with minimal technical skills to
exploit the vulnerability. Although SQL Injection first became
public in a 1998 article in Phrack Magazine, the vulnerability is
still prevalent in today’s web applications. Many big
organizations have been compromised from this vulnerability
showing that SQL Injection is still a viable attack vector.

It is important for developers to write code that will mitigate
the exploit or else organizations may face serious conseguences.
Big banks and tech companies deal with millions of user’s
sensitive data which would be horrendous if it fell into the wrong
hands. Companies must take preventative measures outlined by
distinguished industry leaders in cyber security or else there will
be dire consequences. As mentioned before, SQL Injection is
one of the top web application vulnerabilities and we cannot
stress how important that the public should be aware of it.

References

OWASP, "SQL Injection,” Aug. 2014; www.owasp.org/index.php/
SQL_Injection

OWASP, "SQL Injection Prevention Cheat Sheet,” Jun.. 2014;
www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet

Salesforce, “"Secure Coding SQL Injection”; https://developer.
salesforce.com/page/Secure_Coding_SQL_Injection

V. Chapela, "Advanced SQL Injection,” Apr. 2005; www.one-
esecurity.com/docs/Victor_Chapela-Advanced_SQL _
Injection.pdf

M. Kumar and L. Indu, "“Detection and Prevention of SQL
Injection Attack,” 2014; www.ijcsit.com/docs/Volume%205/
vol5issue01/ijcsit2014050178. pdf

S. Kost, “"An Introduction to SQL Injection Attacks for Oracle
Developers,” Jan 2004; http://www.net-security.org/dl/
articles/IntegrigyIlntrotoSQLInjectionAttacks.pdf

Acunetix, “SQL Injection: What is it?”;www.acunetix.com/
websitesecurity/sqgl-injection/

Acknowledgments

I would like to acknowledge that a major resource used in this
project was by OWASP and they deserve recognition for providing
free and open source material for everyone in the community.

N\ /

